Transformations Preserving the Hankel Transform
نویسنده
چکیده
Transformations Preserving the Hankel Transform Christopher French Department of Mathematics and Statistics Grinnell College Grinnell, IA 50112 USA [email protected] Abstract We classify all polynomial transformations of integer sequences which preserve the Hankel transform, thus generalizing examples due to Layman and Spivey & Steil. We also show that such transformations form a group under composition.
منابع مشابه
Transformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part I. Transformations
Transformations of the form A ! C 1 AC 2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C 1 and C 2 are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques,in part II algorithmsfor Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملTransformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations
Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...
متن کاملOn Fischer{frobenius Transformations and the Structure of Rectangular Block Hankel Matrices
In this paper, we develop three essential ingredients of an algebraic structure theory of nite block Hankel matrices. The development centers around a transformation of block Hankel matrices, rst introduced by Fischer and Frobenius for scalar Hankel matrices. We prove three results: First, Iohvidov's fundamental notion of the characteristic of a Hankel matrix is extended to the block matrix cas...
متن کاملAnalysis of a Fast Hankel Eigenvalue Algorithm
This paper analyzes the important steps of an O(n 2 log n) algorithm for nding the eigenvalues of a complex Hankel matrix. The three key steps are a Lanczos-type tridiagonalization algorithm, a fast FFT-based Hankel matrix-vector product procedure, and a QR eigenvalue method based on complex-orthogonal transformations. In this paper, we present an error analysis of the three steps, as well as r...
متن کاملSome Observations on Dirac Measure-Preserving Transformations and their Results
Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...
متن کامل